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SUMMARY

The consistency of the discretization of the scalar advection equation with the discretization of the
continuity equation is studied for conservative advection schemes coupled to three-dimensional �ows
with a free-surface. Consistency between the discretized free-surface equation and the discretized scalar
transport equation is shown to be necessary for preservation of constants. In addition, this property
is shown to hold for a general formulation of conservative schemes. A discrete maximum principle
is proven for consistent upwind schemes. Various numerical examples in idealized and realistic test
cases demonstrate the practical importance of the consistency with the discretization of the continuity
equation. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of the monotonicity properties of conservative numerical schemes for the scalar
advection equation
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has led to various suAcient conditions for monotonicity preservation, such as the total variation
diminishing (TVD) property or l1 contractivity (see for example the general reviews of these
topics in References [1; 2]). However, these properties are often diAcult or even impossible to
prove for general multidimensional schemes. For example, the TVD property only extends to
Drst-order, fully multidimensional schemes (see e.g. the results of Reference [3]). Therefore, in
order to ensure some degree of monotonicity to multidimensional schemes used in applications,
one-dimensional limiters are usually applied in each coordinate direction.
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A minimal monotonicity requirement, which is, however, desirable of any numerical scheme
for Equation (1), is that an initially uniform scalar Deld remains uniform in the absence of
sources and sinks. This condition has been called the constancy condition in Reference [18],
where it is also shown that instability can arise in methods in which it is violated. Although
easily proven for most conservative schemes on domains with cell volumes that are constant
in time, this property does not always follow for conservative discretizations of (1) coupled
to free-surface �ows. In fact, this property is granted if the conservative scheme employed
is consistent with the discretization of the continuity equation. The concept of consistency
with continuity has been discussed by various authors (see for example References [4–7]),
especially in connection with the links of conservative schemes to their respective advective
versions. A convenient deDnition is given in Reference [6]: a discretization of the advection
equation is consistent with continuity if, given a spatially uniform scalar *eld as an initial
datum, and a general +ow *eld, the discretized scalar advection equation reduces to the
discretized continuity equation. It is to be remarked that this deDnition applies whether or
not the grid volumes vary in time and space. It is also to be noted that consistency with
continuity plays a key role in the monotonicity proof presented in Reference [8] for an
accurate advection scheme on unstructured grids.
The purpose of this paper is to present a discretization approach for the scalar transport

equation coupled to free-surface �ow that ensures the consistency with the semi-implicit dis-
cretization of the continuity equation proposed in References [9; 10]. When coupled to an
Eulerian–Lagrangian treatment of momentum advection, this semi-implicit discretization yields
highly eAcient numerical methods that allow for high-resolution, long time range simulations
at low computational cost. The resulting algorithms, also known as TRIM, have been widely
applied to two- and three-dimensional shallow water models for hydraulics and estuarine
simulations ([4; 9–12]) and have been recently extended also to unstructured grids and non-
hydrostatic �ows in References [13; 14]. For this practical reason it is important that advection
schemes can be easily devised that are consistent with this discretization, so that computation-
ally intensive, long time range simulations of pollutant or sediment transport can be carried
out taking advantage of the very eAcient TRIM methods. However, the concept of consistency
with continuity is clearly relevant also for any other discretization. It is immediate to verify that
consistency with continuity is a suAcient condition for the constancy condition. It will also be
shown by one- and two-dimensional numerical tests with idealized problems that, if the consis-
tency with continuity is violated, initially constant scalar Delds may develop unphysical max-
ima, especially when the free-surface elevation changes abruptly. This is shown to occur even
when monotone or TVD schemes are applied for the discretization of advection. The discrete
maximum principle can be proven if the simplest form of the upwind scheme is applied so as
to obtain discretizations that are consistent with the continuity discretization of TRIM. How-
ever, as soon as transverse �uxes are taken into account, the discretization is no longer CWC
and, therefore, examples in which the discrete maximum principle fails can be easily produced.
As an example, this is shown to be the case for the Drst order, multidimensional upwind meth-
ods proposed in References [5; 15], also known as Corner Transport Upwind scheme. Finally,
realistic two- and three-dimensional simulations have been carried out with upwind advection
schemes coupled to the TRIM method, in order to show that results obtained with non-
consistent discretizations yield quite diMerent and unphysical results with respect to consistent
schemes.
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2. SCALAR ADVECTION FOR FREE-SURFACE APPLICATIONS

An equation for the free-surface elevation, �(x; y; t); above a reference, undisturbed water level
is obtained by integrating the continuity equation over the water column and combining it
with the kinematic boundary condition at the free-surface (see for example the derivation in
Reference [10]). This yields
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where h(x; y) is the depth of the lower boundary measured from an undisturbed water level.
Equation (2) reduces to the shallow-water continuity equation
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where U (x; y; t) and V (x; y; t) are the vertically averaged horizontal velocity components and
H (x; y; t)= h(x; y) + �(x; y; t) is the total water depth. The scalar advection Equation (1) is
not in a form directly useful in free-surface simulations, where the vertical grid spacing, Nz,
changes in time as the free-surface moves. The appropriate formulation is given in this context
by the layer-averaged advective transport equation for each layer k,
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(see Reference [11]). Here s denotes the concentration of the advected tracer. The notation
(f)k indicates the layer-averaged value of f in layer k and (g)k+1=2 indicates the value of
g at the height corresponding to k + 1=2. Layer-averaging in the top layer and applying the
kinematic boundary condition at the free-surface results in the equation
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When only one vertical layer is present, Equation (4) is equivalent to the vertically averaged
scalar advection equation
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where S(x; y; t) is the vertically averaged scalar concentration.

3. THE DISCRETIZED CONTINUITY EQUATION

The free-surface Equation (2) has been discretized in Reference [10] on an Arakawa C-type
staggered grid as follows:
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where Nx and Ny are the constant horizontal grid spacings, m=m(i; j) and M =M (i; j) denote
the bottom and top computational cells for each water column; Nzi±1=2; j; k and Nzi; j±1=2; k are
the heights of the �ux faces. This discretization is locally and globally conservative. The time
discretization method is the so-called generalized trapezoidal method, so that un+�= �un+1 +
(1− �)un and the parameter � takes values in [1=2; 1] for stability of the semi-implicit TRIM
method (see Reference [10]). The vertical velocity is determined by the discrete continuity
equation:
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At the bottom of the water column, wn+�i; j;m−1=2 = 0: Whenever the free-surface does not cross
the uppermost model layer, M is constant and Nzn+1

i; j;M −Nzni; j;M = �n+1
i; j − �ni; j and, in the case

of a single vertical layer, Equation (7) reduces to a discretization of Equation (3).
Positivity of cell volumes is only ensured under appropriate conditions on the time step

(see the discussion in Section 5). For practical use, wetting and drying of cells is taken into
account as described in Reference [11]. With this treatment of wetting and drying, cells whose
depth is smaller than a minimal threshold are marked as dry cells.

4. THE DISCRETIZED SCALAR ADVECTION EQUATION

In this section, appropriate formulations for discretizations of the layer-averaged Equation (4)
are presented, which ensure the CWC property with respect to the discretized free-surface
continuity Equation (7). Both one-step and splitting methods are outlined. It will be shown
that several commonly used discretization approaches can be formulated along these lines.
In order for a one-step update to be consistent with the discretization of the continuity

equation of the TRIM methods, the following general form is suAcient:
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Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:307–327



CONSISTENCY WITH CONTINUITY IN CONSERVATIVE ADVECTION SCHEMES 311

In the top cell (i; j;M) in each water column, Equation (5) is discretized, thus resulting in
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In the above formulas, interpolated values of the advected quantity at the cell faces have
been used, denoted by se; sw; sn; ss; su and sl: The methods of space and time interpolation are
intentionally not speciDed. Various interpolation methods and time levels (from explicit to
fully implicit) can be used while maintaining consistency with continuity. The only property
required of the interpolation method is that in the case of a uniform scalar Deld, (soi; j; k = s

o;
for all i; j; k in the computational domain) the interpolated value on all �ux faces is equal so.
This is true for the interpolation methods of commonly used numerical schemes, including
Drst-order upwind, central diMerence, Lax–WendroM, second-order upwind, �ux limiting meth-
ods, etc. Furthermore, since conservative methods are being considered, +ux face uniqueness
is required, i.e. (sw)i; j; k =(se)i−1; j; k , (ss)i; j; k =(sn)i; j−1; k and (sl)i; j; k =(su)i; j; k−1. It can be ex-
pected that Equation (9) is consistent with Equation (8) by noting that the indices of u; v; w
and Nz are identical in the two equations. It will now be shown that, in a uniform scalar
Deld, the discretization given by Equation (9) is equivalent to the discretized continuity Equa-
tion (8). This in turn ensures that an initially uniform scalar Deld remains uniform. Although
this property can be proven in the most general case, for simplicity it will only be shown to
hold for constant M (i.e., it will be assumed that the free-surface does not cross the uppermost
model layer).
First, CWC will be illustrated for an arbitrary internal cell, i.e., one that is not intersected

by the free-surface. An internal cell height is constant (Nzn+1
i; j; k =Nzni; j; k) in time. Assuming

that sni; j; k = s
o for all i; j; k; Equation (9) can be written
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By substitution of Equation (8), Equation (11) can be simpliDed to

sn+1
i; j; kNz

n+1
i; j; k = s

oNzni; j; k (12)
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Therefore, sn+1
i; j; k = s

o and Equation (11) is equivalent to the discretized continuity Equation (8).
The thickness of the top cell in each water column varies in time as the free-surface moves
and, therefore, a more general proof of CWC is required. In the top cell (k=M), the scalar
advection Equation (10), is
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Summation of the discretized continuity Equation (8) from (k=m) to (k=M − 1) results in
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Substituting Equation (14) into Equation (13) results in
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Furthermore, as long as the top cell has not become dry at time step n+1; in which case the
corresponding values of s need not to be updated, and considering that constant M has been
assumed, Nzn+1

i; j;M −Nzni; j;M = �n+1
i; j −�ni; j: Substituting Equation (7) into Equation (15) results in
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i; j;M (16)

which implies again sn+1
i; j; k = s

o: Therefore, CWC and constancy preservation are assured for all
i; j; k; whether cell i; j; k is an internal cell or a cell containing the free-surface.
For several applications, operator splitting schemes can also be convenient, since opera-

tor splitting allows any scheme that is stable in one dimension to be applied in two and
three dimensions. It is possible to deDne a discretization of the advection equation based
on operator splitting which is consistent with the free-surface discretization (Equation (7)).
However, in order to maintain CWC, intermediate cell heights must be deDned to be used in
the intermediate scalar concentration updates. The scalar is advected Drst in the x direction
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as follows:
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where the intermediate height Nz̃ n is deDned as
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The scalar is then advected in the y direction as follows:
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where the intermediate height Nẑ n is deDned as
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The vertical scalar advection is then performed as follows:
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(
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The operator splitting approach outlined may introduce directional bias. To eliminate direc-
tional bias and achieve higher time accuracy, the order in which the updates are performed
can be alternated between successive time steps. The proof that this splitting scheme is con-
sistent with continuity is analogous to the proof for the one-step method (Equation (9)). A
splitting scheme of this type, employing an explicit time discretization in the horizontal and
an implicit time discretization in the vertical, has been successfully applied to study scalar
transport in an estuary with broad intertidal areas that experience wetting and drying during
each tidal cycle in Reference [4].

5. DISCRETE MAXIMUM PRINCIPLE FOR THE CONSISTENT UPWIND
DISCRETIZATION

In this section, the CWC condition is used in a proof of the discrete maximum principle for
the upwind scheme applied to scalar advection coupled to a free surface �ow. It will also
be shown that this result does not hold for fully multidimensional Drst-order schemes, which
take into account the �uxes in the transverse directions, unless far more restrictive time step
restrictions that would depend on the gradients of total water depth are introduced. For clarity
of the presentation, only the case of the vertically averaged equations will be discussed in
detail, but analogous results can be proven for three-dimensional schemes.
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Local Courant numbers are deDned for conciseness as

cxi+1=2; j=
Nt
Nx
U n+�i+1=2; j

and their positive and negative parts are deDned by

cx;+i+1=2; j=
Nt
2Nx

(
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)
; cx;−i+1=2; j=− Nt

2Nx

(
U n+�i+1=2; j − |U n+�i+1=2; j|

)
so that cxi+1=2; j= c

x;+
i+1=2; j−cx;−i+1=2; j : The values of the corresponding quantities in the y are deDned

analogously.
Given these deDnitions, a free-surface version of the upwind scheme that is consistent with

the discretized continuity Equation (7) of the TRIM method can be conveniently written as

Sn+1
i; j H

n+1
i; j = Sni; j

{
H ni; j −H ni+1=2; jc

x;+
i+1=2; j +H

n
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x;−
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y;+
i; j+1=2 +H

n
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y;−
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}

+ Sni+1; jH
n
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x;−
i+1=2; j + S

n
i−1; jH

n
i−1=2; jc

x;+
i−1=2; j

+ Sni; j+1H
n
i; j+1=2c

y;−
i; j+1=2 + S

n
i; j−1H

n
i; j−1=2c

y;+
i; j−1=2 (22)

The discrete maximum principle is now proven in two steps. Positivity of the above scheme
is proven Drst, under suitable conditions on the time-step. In order to prove positivity, it is
suAcient to show that all the coeAcients of the S values in the right hand side of Equation
(22) are greater than or equal to zero. The only coeAcient that may become negative is

H ni; j −H ni+1=2; jc
x;+
i+1=2; j +H

n
i−1=2; jc

x;−
i−1=2; j −H ni; j+1=2c

y;+
i; j+1=2 +H

n
i; j−1=2c

y;−
i; j−1=2 (23)

For some deDnitions of H at the �ux faces, requiring the sum in Equation (23) to be non-
negative could result in exceedingly severe time-step restrictions. Here, the cell height at the
center of the cell is naturally deDned at each time step as

H ni; j= max(0; hi; j + �ni; j) (24)

where hi; j is the depth of the lower boundary measured from an undisturbed water level.
Along the lines of what was proposed in Reference [7], the �ux face heights are then deDned
as

H ni+1=2; j= max(0; hi+1=2; j + �nupwind) (25)

where, if U ni+1=2; j¿0 then �upwind = �ni; j; and, if U ni+1=2; j¡0; then �nupwind = �
n
i+1; j : Using this

deDnition of the H ni+1=2; j it is immediate to see that, for any non-empty cell, the condition
required for the positivity of Equation (23) is equivalent to

cx;+i+1=2; j − cx;−i−1=2; j + c
y;+
i; j+1=2 − cy;−i; j−1=261 (26)

for all (i; j): Therefore, positivity will hold, provided that this condition is satisDed. This
Courant number restriction only involves the horizontal velocities and does not require any
assumption on the values of H n: Furthermore, condition (26) also implies that the water depths
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H computed by the discrete continuity Equation (7) are non-negative. It is also to be remarked
that this proof relies on the implicit assumption that the upwind directions determined by
U ni+1=2; j and U

n+�
i+1=2; j are the same. However, due to the regularity of the �ow Delds considered,

this is found to be generally true for estuarine applications when condition (26) holds.
Monotonicity follows then by the consistency of the numerical scheme with the discretized

continuity equation and by arguments analogous to those made in Theorem 13:5:1 of Refer-
ence [2]. In fact, the CWC properties plays in this proof exactly the same role of the +ux
consistency condition usually required for conservation law schemes. More speciDcally, as-
sume that positivity of the numerical solution Sni; j is maintained at time n + 1. As it was
shown before, inequality (26) is a suAcient condition for this to be true. Due to linearity and
homogeneity of the numerical scheme and assuming the �uxes at the open boundaries to be
equal to zero, positivity will then imply that, given two numerical solutions Sni; j; T

n
i; j such that

Sni; j6T
n
i; j for all i; j in the computational domain, Sn+1

i; j 6T
n+1
i; j : Taking then T n= max i; j S ni; j as

initial datum at time step n; due to consistency with continuity it will follow that

T n+1 =T n= max
i; j
S ni; j¿S

n+1
i; j

By the same reasoning, the lower bound min i; j S ni; j6S
n+1
i; j can also be proven, so that for a

generic solution S it follows

min
i; j
S n6Sn+1

i; j 6max
i; j
S n

6. EXAMPLES OF NON CONSISTENT AND NON MONOTONIC
DISCRETIZATIONS

The CWC condition can be violated in a variety of ways: whenever the values of u; v; w and
Nz used in the computation of the mass �uxes in Equation (9) do not coincide with the val-
ues at the cell sides that appear in Equation (7), the discrete continuity equation will not be
recovered for the case of a constant initial datum. As previously noticed, employing a diMerent
discretization of the continuity equation, so as to yield CWC for a given advection scheme is
not advisable, given the great computational advantages of the semi-implicit and mass con-
servative discretization (Equation (7)). For simplicity of the presentation, only discretizations
of the vertically averaged two-dimensional equations will be now discussed in detail, but the
same considerations apply to three-dimensional schemes and three-dimensional examples of
the impact of the CWC condition will be presented in Section 8. For deDniteness, two special
cases of CWC violation will be considered in the following numerical comparisons. The Drst
case is the discretization

Sn+1
i; j H

n+1
i; j = Sni; jH

n
i; j

− Nt
Nx

(
U n+1=2
i+1=2; j(SH)e −U n+1=2

i−1=2; j(SH)w
)

− Nt
Ny

(
V n+1=2
i; j+1=2(SH)n − V n+1=2

i; j−1=2(SH)s
)

(27)
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Here, (SH)w, (SH)e, (SH)n, (SH)s denote again values of the conserved quantity SH inter-
polated onto the sides of the computational cells. In the second case of a non-CWC scheme
considered here, the velocity values U n+1; V n+1 are used instead of the time averaged values
employed in the continuity equation, so as to obtain

Sn+1
i; j H

n+1
i; j = Sni; jH

n
i; j

−Nt
Nx

(
U n+1
i+1=2; jH

n
i+1=2; jSe −U n+1

i−1=2; jH
n
i−1=2; jSw

)

− Nt
Ny

(
V n+1
i; j+1=2H

n
i; j+1=2Sn − V n+1

i; j−1=2H
n
i; j−1=2Ss

)
(28)

whereas the two-dimensional CWC scheme is given by

Sn+1
i; j H

n+1
i; j = Sni; jH

n
i; j

−Nt
Nx

(
U n+1=2
i+1=2; jH

n
i+1=2; jSe −U n+1=2

i−1=2; jH
n
i−1=2; jSw

)

− Nt
Ny

(
V n+1=2
i; j+1=2H

n
i; j+1=2Sn − V n+1=2

i; j−1=2H
n
i; j−1=2Ss

)
(29)

In the numerical tests described in the next sections, the results obtained by Equations (27),
(28) and (29) will be compared using exactly the same interpolation procedure in both dis-
cretization schemes, so as to single out the eMects of CWC violation. However, an example
of the problems resulting from the use of Equation (27) can be given on a simple one-
dimensional domain. In Figure 1 the simple geometry of the domain is depicted in proDle

S1

H1

S2

H2

H3/2

U3/2

i  =  1 / 2

i  =  3 / 2

i  =  5 / 2

Figure 1. Violation of CWC on a two-cell grid.
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view. The shaded area represents land and, therefore, the two grid cells in Figure 1 represent
a closed system such as a lake. Initially the two grid cells have equal scalar concentrations
S01 = S

0
2 and diMerent depths H 0

1 ; H
0
2 ; respectively. The depth shown in Figure 1 varies between

cells both due to varying water surface elevation and various depth from a constant vertical
datum to the bottom. Because there is not water �ux or scalar �ux through the boundaries,
�ux of volume and scalar mass passes only through the interface of height H 0

3=2 between the
two grid cells.
Using Drst-order upwind to interpolate the scalar concentration to the �ux faces and assum-

ing positive velocity, the discretization (Equation (27)) applied to this simple case yields for
cell 1

(SH)n+1
1 = (SH)n1 −

Nt
Nx
U n+1=2
3=2 (SH)n1 (30)

Substitution of Equation (7) for cell 1 results in

Sn+1
1

(
H n1 − Nt

Nx
U n+1=2
3=2 H n3=2

)
= Sn1

(
H n1 − Nt

Nx
U n+1=2
3=2 H n1

)
(31)

Thus, Sn+1
1 �= Sn1 when H n1 �=H n3=2; so that, even in this very simple application, constant initial

data are not preserved in general.
In order to show that, as far as CWC discretizations are concerned, the discrete max-

imum principle does not hold in general for schemes more sophisticated than simple up-
wind, the so called Corner Transport Upwind is considered, which was proposed in Reference
[15] and has been reintroduced in a slightly diMerent form in Reference [5]. This multi-
dimensional scheme takes into account transverse �ow in the computation of the upwind
�uxes, thus resulting in a more accurate Drst-order scheme than the simplest multidimensional
upwind.
The Courant–Friedrichs–Lewy condition (see References [1; 2]) for the CTU scheme is

more relaxed, since it depends on the maximum of the Courant number in each coordinate
direction. In the case of the discretization of the vertically averaged, two-dimensional advection
Equation (6), the CTU scheme can be written as

Sn+1
i; j H

n+1
i; j = Sni; jH

n
i; j

−
{
H ni+1=2; j

[
cx;+i+1=2; jS

+
i+1=2; j − cx;−i+1=2; jS

−
i+1=2; j

]

−H ni−1=2; j

[
cx;+i−1=2; jS

+
i−1=2; j − cx;−i−1=2; jS

−
i−1=2; j

]}

−
{
H ni; j+1=2

[
cy;+i; j+1=2S

+
i; j+1=2 − cy;−i; j+1=2S

−
i; j+1=2

]

−H ni; j−1=2

[
cy;+i; j−1=2S

+
i; j−1=2 − cy;−i; j−1=2S

−
i; j−1=2

]}
(32)
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v

u

Figure 2. Counterexample to the discrete maximum principle for the free-surface CTU scheme.

where

S+i+1=2; j =

[
Sni; j +

cy;+i; j−1=2

2
(Sni; j−1 − Sni; j)−

cy;−i; j+1=2

2
(Sni; j − Sni; j+1)

]

S−i+1=2; j =

[
Sni+1; j +

cy;+i+1; j−1=2

2
(Sni+1; j−1 − Sni+1; j)−

cy;−i+1; j+1=2

2
(Sni+1; j − Sni+1; j+1)

]

and the other analogous terms are deDned accordingly. Here, the horizontal Courant numbers
are deDned as in the previous section. It can be easily noticed that this discretization is
consistent with the continuity equation in the sense of the deDnition given the introduction.
However, the discrete maximum principle does not hold for this scheme, as can be shown by
the following example.
Consider a discretization grid representing an L-shaped channel as in Figure 2. In this plan

view Dgure the shaded region is land and, therefore, the geometry is that of a channel one
grid cell wide that bends at cell (1; 1): All velocities normal to the closed boundaries are taken
to be zero, whereas an in�ow from cell (2; 1) is assumed, so that u3=2;1¡0 and v1;3=2¿0: The
CTU scheme update can be rewritten for cell (1; 1) as

Sn+1
1;1 H

n+1
1;1 = Sn1;1H

n
1;1 +H

n
3=2;1c

x;−
3=2;1S

−
3=2;1 −H n1;3=2cy;+1;3=2S

+
1;3=2 (33)

where:

S−3=2;1 = S
n
2;1

S+1;3=2 = S
n
1;1 −

cx;−3=2;1

2
(Sn1;1 − Sn2;1)
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This can be reformulated as

Sn+1
1;1 H

n+1
1;1 = Sn1;1

(
H n1;1 −H n1;3=2cy;+1;3=2 +H

n
1;3=2

cy;+1;3=2c
x;−
3=2;1

2

)
+ Sn2;1c

x;−
3=2;1

(
H n3=2;1 −

cy;+1;3=2

2
H n1;3=2

)

This shows that, assuming for example Sn1;1 = 0 and S2;1¿0; a necessary condition for positivity
of Sn+1

1;1 is

cy;+1;3=26
2H n3=2;1
H n1;3=2

Therefore, time-step restrictions involving total water depth ratios will be needed for this
scheme to ensure positivity. This type of condition can be extremely restrictive and practi-
cally impossible to enforce for realistic applications, thus making the CTU eMectively non-
monotonic for realistic free-surface �ows. However, it will be shown that in practice only
very small non-monotonic eMects are produced, even in simulations with realistic, complex
bathymetry and real tides.

7. NUMERICAL TESTS: COMPARISON WITH ONE- AND TWO-DIMENSIONAL
ANALYTICAL SOLUTIONS

Several numerical simulations have been carried out in order to estimate the eMects of violating
the CWC condition. In all the simulations, in order to avoid sources of numerical error other
than the chosen advection scheme, the initial values for H;U was chosen as the appropriate
value at the initial time for the analytical solution of the nonlinear shallow water equations
considered in each case. The velocity Deld was then given at each time step by the analytical
solution. The total water depth was computed by the discrete continuity Equation (7) and the
scalar concentration Deld was Dnally updated with a conservative scheme using the previously
computed values of H; U: In all the tests, a comparison has been carried out between the
results obtained using schemes (29) and (27), respectively. Exactly the same procedures for
reconstruction of the face values of S; SH were used in both discretization schemes, so as to
single out the eMects of CWC violation.
One-dimensional tests were performed with the analytical solution of the Riemann problem

in the case of constant bottom depth (see, e.g., the derivation in Reference [16]). The initial
value for H was taken to be a positive constant for x60 and 0 for positive values of x: The
initial datum for S was assumed to be constant and equal to 1: In these simulations, cells with
total depth less than 10−4 m were considered dry. The results obtained with a Lax–WendroM
slope limited TVD second-order scheme for reconstruction of the concentration values at the
sides of the cell are displayed in Table I, where relative errors in l1; l2 norm and maximum
and minimum values of the computed solution are shown after 50 time steps. Furthermore,
a one-dimensional test with initial values for S given by a cosine pulse was also run. No
new maxima are produced by the CWC slope limited second-order scheme, while the corre-
sponding non-CWC scheme yields new maxima, as shown at various times in Table II. As
expected, the largest errors are observed to occur at the edge of the wet area in all the above
tests.
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Table I. Results of one-dimensional simulation with constant initial datum,
second-order TVD slope limited scheme.

l1 l2 Maximum Minimum

CWC 1.04e-8 5.84e-8 1.00 1.00
Non-CWC 6.25e-3 4.97e-2 1.07 3.16e-2

Table II. Maximum values in one-dimensional simulation with non-constant initial
datum, second-order TVD slope limited scheme.

10 time steps 20 time steps 30 time steps 40 time steps

CWC 0.99 0.99 0.99 0.99
Non-CWC 1.07 1.06 1.06 1.05

For two-dimensional tests, the analytical solutions given in Reference [17] by Thacker for
oscillations in a parabolic basin were employed. An analytical solution to a vertically averaged,
unsteady free-surface �ow is used to specify the velocity Deld for various vertically averaged
scalar advection discretizations. In this �ow, the shoreline is not Dxed and cells experience
wetting and drying as the shoreline moves.
The governing equations of this test case are the shallow water equations for a constant

density �ow without bottom stress or horizontal diMusion but taking into account the Coriolis
force.

@U
@t

+U
@U
@x

+ V
@U
@y

− fV + g
@H
@x

=0 (34)

@V
@t

+U
@V
@x

+ V
@V
@y

+ fU + g
@H
@y

=0 (35)

@H
@t

+
@(UH)
@x

+
@(VH)
@y

=0 (36)

where U and V are the horizontal velocity components in the x and y directions, respectively;
g is the acceleration of gravity; f is the Coriolis parameter and H = h+ � is the depth. The
bathymetry of the parabolic basin is described by the equation

h= hcen

(
1− x

2

L2
− y

2

L2

)
(37)

where h(x; y) is the depth relative to the equilibrium free-surface level, hcen is the depth at
the center of the basin and x and y are zero at the center of the basin. L is the distance from
the center of the basin to the circle of zero depth. The initial free-surface elevation at the
center of the basin is �0cen: The solution given by Thacker in Reference [17] is

U =
1

1− A cos(!t)
[
1
2
!xA sin(!t)− 1

2
fy
(
(1− A2)1=2 + A cos(!t)− 1

)]
(38)
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Table III. Results of two-dimensional simulation with constant initial datum,
second-order scheme.

l1 l2 Maximum Minimum

CWC 5.44e-7 7.21e-7 1.00 1.00
Non-CWC 8.55e-3 4.13e-2 2.68 −5.48e-2

V =
1

1− A cos(!t)
[
1
2
!yA sin(!t) +

1
2
fx
(
(1− A2)1=2 + A cos(!t)− 1

)]
(39)

�= hcen

(
(1− A2)1=2
1− A cos(!t) − 1− x

2 + y2

l2

[
1− A2

(1− A cos(!t))2 − 1
])

(40)

where A is given by

A=
(hcen + �0cen)

2 − h2cen
(hcen + �0cen)2 + h2cen

(41)

and ! is given by

!2 =
8ghcen
l2

+ f2 (42)

The analytical solution for � is used to specify the initial conditions and, � at all other times
is computed using the discretized depth-averaged continuity equation.

�n+1
i; j = �ni; j −

Nt
Nx

[
Hni+1=2; jU

n+�
i+1=2; j −Hni−1=2; jU

n+�
i−1=2; j

]

− Nt
Ny

[
Hni; j+1=2V

n+�
i; j+1=2 −Hni; j−1=2V

n+�
i; j−1=2

]
(43)

The various parameters are selected to be representative of the geometry of many lakes and
estuaries. The initial radius, L; is 12km, the depth at the center of the basin, hcen, is 10m and
the initial free-surface elevation at the center of the basin, �0cen; is 0:5 m. The grid spacing is
100 m and the Coriolis parameter corresponds to a latitude of 56◦: The time step is 6:72 s,
and, therefore, one period of oscillation corresponds to 400 time steps.
Once again, an initially uniform scalar Deld is speciDed and the constancy of scalar con-

centration is tested for CWC and non-CWC discretization methods. First-order upwind in-
terpolation is used for all two-dimensional simulations. In all cases, the free-surface height
is computed using Equation (43) with �=1=2: The initial datum for S was chosen to be
constant and equal to 1. The Lax–WendroM slope limited TVD second-order scheme recon-
struction procedure was employed for the concentration values at the sides of the cell. In
these simulations, cells with total depth less than 10−4 m were considered dry. The results
obtained are displayed in Table III, where relative errors in l1; l2 norm and maximum and
minimum values of the computed solution are shown after 200 time steps, which correspond
to half the period of the free-surface oscillations. Again, the largest errors occur in the areas
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Table IV. Maximum values in two-dimensional simulation with non-constant initial
datum, second-order scheme.

30 time steps 60 time steps 90 time steps 120 time steps

CWC 1.00 1.00 1.00 1.00
Non-CWC 2.35 1.94 1.54 1.36

where wetting and drying occurs. Furthermore, a two-dimensional test with an initial datum
for S given by a cosine hill was also run. No new maxima are produced by the second-order
CWC scheme, while the corresponding non CWC scheme yields large new maxima, as shown
at various simulation times in Table IV.

8. IMPORTANCE OF THE CWC CONDITION IN REALISTIC SIMULATIONS

The CWC methods outlined above have been applied to several realistic three-dimensional
simulations of scalar transport in estuaries. Both the one-step update method and the splitting
method have been used, along with velocities and free-surface elevations obtained by the
hydrostatic TRIM method [10]. The simulation of discharge from a point source using a one-
step update method is discussed in Reference [11]. Long-term salt transport is reproduced
accurately in References [4; 12] using a splitting approach.
However, in order to measure the speciDc impact of the CWC violation also in realistic

simulations characterized by strongly varying currents and complicated domain geometry,
several two- and three-dimensional tests have been performed coupling the transport schemes
to numerically simulated time-dependent dynamics obtained using the hydrostatic version of
the TRIM method. The simulation domain was taken to be a high-resolution grid of the lagoon
of Venice with Nx=Ny=50 m: The schemes used for horizontal advection were:

1. the upwind, CWC scheme
2. the CTU, CWC scheme
3. the upwind, non-CWC scheme with wrong Nz (see, e.g., Equation (27))
4. the upwind, non-CWC scheme with wrong velocity (see, e.g., Equation (28)).

Firstly, two-dimensional simulations were performed starting from quiescent water and using
constant initial and boundary values for the passive tracer concentration. Considering that about
12 h are needed for realistic �ows to develop throughout the lagoon, a 24 h long simulation
was run with real tidal elevation data as a boundary condition. The time step was taken to be
30s, which ensured that condition (26) was always satisDed. In Figure 3, relative errors of the
upwind scheme 1 (with respect to the constant exact solution) in l∞; l2 norm are reported as
a function of time. It can be seen that average and peak values of the errors are very limited
throughout the simulation. The key parameter which determines the order of magnitude of
these errors for CWC schemes is the tolerance used in the preconditioned conjugate gradient
algorithm for the implicit step. In fact, insuAcient accuracy of the solution provided by the
linear solver may induce numerical inconsistency between the �uxes evaluated implicitly in
the system and those used in the advection computation. Relative errors in l∞, l2 norm for the
CTU scheme 2 in this test case coincide with the ones obtained for the upwind scheme up to

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:307–327



CONSISTENCY WITH CONTINUITY IN CONSERVATIVE ADVECTION SCHEMES 323

0 6 12 18 24

1.2e-015

6.2e-012

1.2e-011

1.9e-011

2.5e-011

0.0e+000

5.0e-008

1.0e-007

1.5e-007

Time [hours]

 l 2 r
el

at
iv

e 
er

ro
r

 
l∞

 relative error  

  l
2

  l∞  

Figure 3. Relative errors for upwind CWC scheme 1, test case with uniform initial datum.
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Figure 4. Relative errors for upwind non-CWC scheme 3 (incorrect Nz),
test case with uniform initial datum.
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Figure 5. Relative errors for upwind non-CWC scheme 4 (incorrect velocity),
test case with uniform initial datum.

machine accuracy. The errors in l∞, l2 norm for the non-CWC upwind schemes 3 and 4 are
reported in Figures 4 and 5, respectively. The error is particularly large in the case of upwind
deDnition of the �ux (SH): this happens because, in domains with complicated geometry like
the Venice lagoon, the inconsistency between the conservative and the advective water �ux
mainly depends on the water depth H: It is clear that inconsistent schemes lead to errors that
are unacceptable for practical application.
Realistic three-dimensional simulations of pointwise discharge of pollutant in the lagoon

have then been performed. In this case, the vertical advection was discretized by the implicit
upwind scheme in order to avoid heavy time-step restrictions. In order to test the longer term
in�uence of CWC violations, a 10 day long simulation was run. For the vertical discretization,
28 layers of 1 m thickness were employed. The time step chosen for the hydrodynamic
computation was 900 s, and substepping was used for passive tracer advection in order to
comply with the Courant–Friedrichs–Lewy stability restriction. The errors, in l∞, l2 norm
for the non-CWC upwind schemes 3 and 4 are reported in Figures 6 and 7, respectively. In
these case, the errors in l∞ norm are one order of magnitude smaller than in the case with
uniform concentration, while the l2 errors are almost three orders of magnitude larger than
in the uniform case. This shows that, in the non-uniform case, the error is more diMused and
signiDcantly aMects the overall results. It is important to notice that, also in this case, the
order of magnitude of the errors remains the same throughout the simulation.
In Figure 8 the relative diMerence in l∞, l2 norm between the solution computed by CWC

upwind advection (scheme 1) and the solution computed by CWC multidimensional upwind
advection (scheme 2) is shown. The diMerences between the solutions computed by the two
schemes are rather small and remain of the same order of magnitude throughout the simulation.
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Figure 6. Relative errors for upwind non-CWC scheme 3 (incorrect Nz),
test case with pointwise tracer discharge.
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Figure 7. Relative errors for upwind non-CWC scheme 4 (incorrect velocity),
test case with pointwise tracer discharge.
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Figure 8. Relative diMerence between upwind-CWC scheme 1 and CTU-CWC scheme 2
solutions in test case with pointwise tracer discharge.

It can be assumed that they are mainly due to the diMerence in eMective accuracy between
the two schemes. The theoretically possible violations of the discrete maximum principle for
the CTU scheme seem to play a negligible role in this type of practical applications.

9. CONCLUSIONS

In the framework of three-dimensional free-surface �ows, consistency of discretization schemes
for the scalar advection equation with the discretized continuity equation have been studied.
The general form of a scheme consistent with the discretized continuity equation for the
speciDc discretization employed in the very eAcient and widely applied TRIM models has
been presented. The role of this condition in proving monotonicity for upwind schemes in
the free-surface context has been emphasized. Several numerical tests have been performed
in order to display the errors that can be induced by the violation of the CWC condition.
Both idealized and realistic tests show large errors and strongly non-monotonic behaviour in
the results of schemes that do not satisfy the CWC condition.
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